Dissociating movement from movement timing in the rat primary motor cortex.
نویسندگان
چکیده
Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions.
منابع مشابه
Neuronal activity in the supplementary motor area of monkeys adapting to a new dynamic environment.
To execute visually guided reaching movements, the central nervous system (CNS) must transform a desired hand trajectory (kinematics) into appropriate muscle-related commands (dynamics). It has been suggested that the CNS might face this challenging computation by using internal forward models for the dynamics. Previous work in humans found that new internal models can be acquired through exper...
متن کاملNeuronal Activity in the Dorsal Premotor Area and Ventral Premotor Area of Monkeys adapting to a New Dynamic Environment
In a series of experiments, we investigated how neurons in the different motor areas of the frontal lobe reflect the movement dynamics, and how their neuronal activity undergoes plastic changes when monkeys learn a new dynamics. Here we describe the results obtained in the dorsal premotor area (PMd) and ventral premotor area (PMv). Monkeys performed visually instructed, delayed reaching movemen...
متن کاملPrimary motor cortex of the parkinsonian monkey: altered encoding of active movement.
Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson's disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility t...
متن کاملTime course of determination of movement direction in the reaction time task in humans.
The primary motor cortex produces motor commands that include encoding the direction of movement. Excitability of the motor cortex in the reaction time (RT) task can be assessed using transcranial magnetic stimulation (TMS). To elucidate the timing of the increase in cortical excitability and of the determination of movement direction before movement onset, we asked six right-handed, healthy su...
متن کاملThe preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI.
Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 47 شماره
صفحات -
تاریخ انتشار 2014